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On the basis of the dynamical theory a new geometry of X-ray diffraction is suggested and analyzed
in detail. Diffraction scattering occurs from the planes deviated by several degrees from the sur-
face normal, the incident and diffracted beams forming small glancing angles with the surface. It is
shown that the asymmetry factor can be varied within a wide range through small variations of the
incidence angle, which malkes it possible to study diffraction both in the Laue and Bragg case.
A strong dependence is observed of the departure angle of the diffracted wave on the fulfilment
of the exact Bragg condition, the angular scale increasing by several orders of magnitude. The pos-
sibilities of the above-described geometry for studying thin surface layers are discussed.

IpeasoseHa W METAJbHO IPOAHATM3NPOBAHA HA OCHOBE AMHAMMYCCKOH TEOPUM HOBAA
cxeMa TUQPAKIUM PEHTreHOBCKUX Jydeii. [{udpparimonHoe pacceAHne TNPOUCXOLUT Ha
IIIOCKOCTAX, OTKIOHEHHBIX OT HOPMAJH K IIOBEDXHOCTY HA YIJIBl M0 HECKOJBKUX Ipany-
COB, NpU 3TOM TIafalolmuii U AudparupoBaHHbI NyYyKN 00PA3yIOT Majlble CKOJIB3AIINC
Yrael ¢ NoBepxHOCTbIO. IToKasaHa BO3MOJKHOCTH B IMMPOKHUX lpefesax BapbUpPOBAThL
PaKTOP aCHMMeTPUH! [OCPECTBOM MaJbIX M3MEHEHHI yria najeHusi, usydarb mudpakr-
muio B reomerpun Bparra, B reomerpun Jlays. Tloaydyena cuibHas 3aBUCUMOCTH yrja
BBIXOJA AUPpPATHPOBAHHOI BOJHBI OT BBEIIOJHEHUA ycjaoBUs Lparra ¢ ybeaudeHHeM
YrioBoro Macmrada Ha HECKOJIBKO MOPANKOB. O0CyRIA0TCA BO3MOMKHOCTH MPUMEHEHN
HOBOI CXeMbI VI U3yYeHUsl TOHKUX ITOBEPXHOCTHBIX CJI0€B MOHOKDUCTAJLIOB.

1. Introduction

Recent theoretical and experimental studies have shown that X-ray diffraction under
specular reflection (SR) conditions is a new, powerful tool for studying the structure
of ultrafine layers on a crystal surface. Inclined geometry for the symmetric Laue
case has been suggested first in [1] where both the incident and the diffracted beams
made small angles with the surface and experienced specular reflection. In [2] the
detailed analysis of this geometry was carried out and it was shown that the value
of the angle of departure of a specularly reflected diffracted (SRD) wave strongly
depends on how accurately the incident beam satisfies the Bragg condition. The
ascertainment of this relation provided an essential simplification of the procedure
in comparison with that suggested in [1], namely, it was suggested to carry out the
experimental measurements using collimation only with respect to the angle of inci-
dence and to separate diffracted rays with different deviations from the Bragg angle
not in the plane of diffraction but by measuring their angles of departure from the
crystal.

yl‘he next step in this direction was made in [3] where the authors used crystals with
small misorientation angles, i.e., realized diffraction by planes not exactly normal to
the crystal surface. The change in the misorientation angle by several degrees leads
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to qualitatively new results. It turned out that slightly changing the incidence angle,
we can observe the transition from the Laue case to the Bragg one, pass from sym-
metric diffraction to extremely asymmetric diffraction, using the same diffracting
planes, and also realize the case where diffraction occurs simultaneously according to
Bragg and Laue, which fact is reflected in the title of our paper. In the present work
we consistently describe and consider in detail all the cases occurring with inclined
geometry, taking into account that the misorientation of several degrees permits us
to neglect SR of at least one of the beams.

It is necessary to note that earlier the problem of diffraction by crystals with
misoriented surface was considered for a conventional (not inclined) geometry in
connection with the great interest in asymmetric monochromators [4 to 14]. In
[4 to 6, 10] the Bragg case and in [7, 11, 12] the Taue case was studied. The authors
investigated the effect of specular reflection of one of the waves, incident or diffracted,
on the shape of the rocking curve and the change in anomalous transmission under
the conditions of extremely asymmetric diffraction. It was indicated in [8, 9] that
in the extremely asymmetric case both Bragg and Laue diffraction can occur simul-
taneously.

The interest to the inclined geometry is associated mainly with the possible study
of the perfection of very thin subsurface layers of crystals. Since the extinction length
is two-to-three orders of magnitude smaller in this case, the diffracted radiation
provides direct information on the structure of layers as thick as several nm [15 to 17],
while measurements of asymptotic diffraction [18] in the above geometry correspond

to the study of monolayers.

9. Gieneral Equations for Bragg-Laue Diffraction

The geometry of diffraction is shown in Fig. 1. Here s, K, and k, are the wave
vectors of incident, refracted (transmitted), and diffracted waves, respectively, #{
and ), are the wave vectors of specularly reflected and specularly reflected diffracted
waves, @, is the angle of incidence of the wave onto the crystal, @, the angle of
departure from the crystal of the SRD wave, ¢ the misorientation angle of diffracting
planes with respect to the surface normal.

Following [2] and [3], we consider the continuity conditions for the tangential
components of wave vectors on the entrance surface of the crystal together with the
diffraction conditions. It can readily be obtained that at @,, @, and ¥ < 1,

D2 = (D, + V)2 —«, (2.1)
where « is the deviation from the Bragg angle and Y is the effective misorientation
angle,

K, —
o o IO g sin 20,50 — On), 2.2)

Fig. 1. Bragg-Laue diffraction in in-
clined geometry. 1 diffracting planes,
@ misorientation angle, @, incidence
angle, @; angle of departure of the
diffracted beam. For other notations
see the text
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W — 2¢ sin 03, angles ¢ and ¥ are considered to be positive, if the reciprocal lattice

vector K is directed into the crystal.
The equations of the dynamical theory for fields D, and D, in the crystal in the
case of s-polarization have the form

(u? — (p(z)) Dy = XODO + XiDh ’
[(w -+ P)2 — @3] Dy = 2eDn + 13D, -

Here u = ko,/%, is the unknown parameter. In this case the dispersion equation is
quartic,

(2 — ®F — 50) [(w + V) — BF — 1] = Y - (2.4)

Tt can be shown that for all values of the parameters the equation has two roots with
positive imaginary part and two roots with negative one. Assuming the crystal to
be infinitely thick, we must choose roots with positive imaginary parts which cor-
respond to field damping with depth.

To determine the field amplitudes it is necessary to use the boundary conditions
on the entrance surface. From the continuity of the tangential components of electric
fields it follows

Dy(Ey — B§) = uWDP 4 u@DP
— O E = (uV - W) DY 4 (u® + ) DP . (2.5)
The conditions of continuity of the tangential components of magnetic fields are

in this case, within the first terms of the expansion in @, and @,, equivalent to the
continuity conditions for the normal components of electric fields,

E,+ By =D{ + D@,  Ei=DP +DP. (2.6)

In these expressions E, and Ej are the amplitudes of incident and specularly reflected
waves, E} is the amplitude of the SRD wave.
Solving (2.3) with due account of the boundary conditions (2.5), (2.6) we arrive at

20, WOWD (@ — uV) E,
GLTOWD | Bg) (1@ + By + V) — WO 4 B) (WD 4Py + V]
(2.7
Here W@ — u®2 — @} — », and index i = 1,2 corresponds to two waves being
damped with crystal depth, the solutions of dispersion equation (2.4).

Passing to the reflection coefficient, it is necessary to take into account the flux
ratio of incident and diffracted beams,

AR
py— i D
’ B, @,

(2.3)

Y

(2.8)

The angular dependence of the intensity of SRD wave on « calculated by (2.7),
(2.8) can have a shape essentially different from a conventional rocking curve, yet
the angular range of the diffraction maximum is approximately the same, several
seconds of arc. If the same intensity is considered as a function of the angle of depar-
ture from the crystal, @, and (2.1) relating & with @, is taken into account, the angular
scale increases by several orders of magnitude,

S —dx

=" 50, S50, + 7

~ (101 — 108) 3w . 2.9)
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20F R L Fig. 2. The effect of small misorientations on the in-
r . tensity of diffracted curves. Si(220) CuK,, @, = 13.34’,
161 a ] misorientations (1) ¢ = —1/, 2) ¢ =0/, 3) ¢ = +1’
ne ~ 2 ‘
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Clearly, that such a gain in the angular scale is possible only at small angles @), @,
and ¥.

It is also obvious that independently of the fact whether intensities are measured
depending on o or @, the integral intensity should be the same, and, consequently,
the reflection coefficient Rj will be renormalized when measurements are taken
depending on Py,

R = 20,P; , (2.10)

where the factor 2@, ~ 10-! to 1073 corresponds to the lower density of states for
the dependence of the intensity on the angle of departure.

In the absence of misorientation (¥ = 0) (2.7) transforms into the formula for
diffraction from crystals without misorientation[2]. An important factor, characteristic
of the geometry used and following from the obtained relationships, is a high sensitivity
to small misorientations comparable with the critical angle of the total external
reflection, @, = J|y,|. Fig. 2 shows curves Ej(®,) calculated for Si(220) CuK, reflec-
tion, @, = P, = 13.34' for three different values of misorientation, ¢ — 0", £1".
It is seen that misorientation as small as 1’ corresponds to a 109, change in intensity.
These data prove, firstly, that it is possible to measure with precision the misorientation

angle from the difference of the intensities of hkl and hkl reflections from the mis-
oriented plane and, secondly, that one should have very flat surfaces for experimental
work in inclined geometry.

Crystals with quite a considerable misorientation can give a large amount of
various diffraction curves which will be classified and considered in detail later on.

3. Diffraction Geometry Depending on Incidence Angle

The geometry described in [1, 2] corresponds to symmetric diffraction in the Laue
case (¥ = 0). The reciprocal lattice vector is parallel to the crystal surface. The diffract-
ed wave k, receives no additional momentum directed into the crystal or towards
the entrance surface.

If the reciprocal lattice vector is misoriented in such a way that its normal compo-
nent is directed into the crystal (¥ > 0), we have asymmetric diffraction in the Laue
case. Then the diffracted wave k, receives an additional momentum directed into
the crystal and the angle between the wave and the surface increases, whereas the
intensity of the SRD wave decreases.

The most interesting cases are those characterized by large negative misorientations
(¥ <0, ®,<|¥| < 1). During such reflection the diffracted wave k, receives an
additional momentum in the direction of the external normal to the surface, therefore
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the diffraction geometry depends on the incidence angle. At small incidence angles
(@, < |¥|) Bragg-case diffraction occurs, while at large ones (@, > |¥|) diffraction
according to Laue is observed. At |¥| — @, < @, =< || + D, the Bragg case changes
to the Laue case. In the Bragg case the wave kj in the crystal is directed towards the
entrance surface, and the wave »} is its refracted continuation in vacuum and not
the specular component as it takes place in the Laue case.

A remarkable property of the inclined geometry in the Bragg case is the possibility
to vary within a wide range the asymmetry factor by slightly changing the incidence
angle. At 0 < @, < @, we obtain extremely asymmetric inclined Bragg-case diffrac-
tion with specular reflection of the incident beam g = @,/(|¥| — D,) < 1. With an
increase in the incidence angle the asymmetry becomes less pronounced and the value
@, = 0.5 || corresponds to the symmetric, inclined diffraction in the Bragg case,
B = 1. In this case neither of the beams experiences SR, since @, @, > @.. Increasing
further @, at 0 < || — @, < D, we observe again an extremely asymmetric Bragg
pattern, 8> 1 near the Bragg-Laue transition, the conditions of SR for the diffracted

wave being fulfilled.
On the whole, the asymmetry factor in the region under consideration varies within

the limits
D,

W @, <p <
Thus, in Si(111) wafers with maximum 4° misorientation along the [112] direction
there are (011) planes with 3°38" misorientation. Using the second order of the CuK,
reflection from these planes, we obtain ¥ = —166.6", @, = 13.3’, and 0.08 < g <
< 12.00, i.e., § may vary within a wide range.

Still further increasing the incidence angle, @y > |¥| leads to the transition to an
extremely asymmetric Laue case, i.e. the diffracted beam propagates into the crystal.
If the incidence angle is within the interval @y~ |¥| 4+ @,, the condition for SR
is fulfilled and we observe an SRD wave. The wave diffracted according to Bragg,
#5, transforms into the specular component of the wave diffracted according to
Laue. As has been shown in [2] the intensity of the SRD wave in this case, similar
to the Bragg case, is comparable with the intensity of the incident wave. For larger
incidence angles the SRD wave starts damping as 1/®§, the asymmetry becomes less
pronounced and Laue case diffraction occurs with slight asymmetry.

The absence of SR for at least one of the waves provides an essential simplification
of the general relationships obtained in Section 2 for each of the cases. .

Y —
'—'d)— (3.1)

4., Transformation of Dispersion Equation

For further consideration it is convenient to introduce new variables into the disper-
sion equation (2.4).
Let us introduce instead of u the following parameters:
So=u VB + 10, So=u+VP§+ % (4.1)

Sp=u+¥ —YB: + 50, Si=u+¥ VD + -

These variables characterize the change in the normal component of the wave
vector in a crystal at diffraction. The position of a diffraction maximum in the Bragg
case corresponds to S, = 8§ and in the Laue case to S, = S5. A small value of the
quantity |S§| < @, corresponds to the intensive excitation of the specularly reflected

wave Ej.

10*
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Conditions S, = S, and S, = S} determine the angular shift of the diffraction
maximum due to refraction from the position &« = 0 predicted by the kinematical
theory. Let us introduce a complex parameter & to describe the shift. According to
(4.1) and (2.5), we obtain

§ = — 2D, — VD + 1) (4.2)

(Re & = 0 determines the angular position of the maximum). It should be noted that
the position of the intensity maximum of the wave »} coincides with the position of
the diffraction maximum only in the Bragg case. For the Laue case the position of
the intensity maximum from the side of the entrance surface is determined mainly
by the angular dispersion of SR and not by diffraction scattering.

At large angles @), @, > @, (4.2) reduces to the standard one (see, e.g., [19)),

. @
oc:oc——x(,(l?ai), (4.3)

where plus corresponds to the Bragg case, @, + ¥ < 0.
The dispersion equation in the new notation has a rather simple form

SoSuSoSh = AnXz (4.4)
or - - - -

So(So + VB + 10 + ¥ — VBF + 20) (Sy + 2V PG + ) (Sy + VP§ + 70 +

+ ¥ +VD} + 1) = s - (4.42)
Now, it is easy to see the approximate solutions of the dispersion equation. In the
zeroth approximation (y, = 0) four roots S of (4.4) correspond to successively
vanishing multipliers in the left-hand side. If for one of the roots the remaining multi-
pliers turn out to be much larger than VIxal the root can readily be calculated and the
degree of the equation reduces by one. If we obtain two such roots, the dispersion
equation reduces to a quadratic one. Below we shall show that in the case of SR for
the incident and diffracted waves the equation is quartic; if SR occurs only for the
incident or diffracted wave the equation is cubic; if there is no SR the equation is of
second order.

5. Inclined Bragg Diffraction without Specular Reflection

Let us consider in more detail diffraction at incidence angles satisfying condition (3.1)
where we can neglect SR for both the incident and diffracted waves. The dispersion
equation has two solutions with waves damping with the crystal depth, S{) = 2@,
and S@), the latter satisfying the equation

e N e
o[+ 2q)h)+ o 5.1)

and condition (see (4.1))

Im (8@ + Y@F + %) > 0. (5.2)

The corresponding solution is

Vot
8@ — LA (L — .
§ z(phw),( v+ Ve —1), (5.3)
ayp (5.4)

Y= ——.
2|/ anta
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Parameters W® entering (2.7) have the form
WO = 8O (S(()i) + 2/D2 4 ) - (5.5)

Since |W®| > |W®)]|, the expression for the amplitude ES is essentially simplified
and we arrive at

we
By =

29

E, ==

Xn Xn

Substituting the latter expression into (2.8), we obtain the well-known expression of
the dynamical theory

S@H, . (5.6)

xn

P = | —y + V2 — 1)2. (5.7)
h

Let us consider this expression from a somewhat different standpoint. It has already
been indicated how important it is to use small angles @, and @, in the given geometry.
Due to the relation between @, D, and x, we study the rocking curves taken depend-
ing on the angle of departure @, and not on &, as in the conventional methods. The
halfwidth of the Darvin curve, A®,, determined from the condition y = 1 is

AD, — 21l (5.8)
V@, Py

For example, for Si(111) for the symmetric (220) CuK, reflection (P, = 83.3")
A®, — 160", whereas using the conventional recording depending on «, we have
A = 6.7”. The shape of the diffraction maximum for recording with respect to D,
is shown in Fig. 3 (the calculations were performed by the general formulae (2.7, 2.8)).

Thus, the use of small angles provides an essentially higher accuracy of measuring
rocking curves. Such an attempt was made first in [20]. It is clear that the diffraction
pattern is described by the approximate formula (5.7) until @, > @,, ie. for x L
L (1P] — D)™

Another specific feature of using small angles is an essential decrease in the ex-
tinction length. Tt can readily be estimated that the amplitude of the field correspond-
ing to the root Sgl) is small,

2

| DO | S@ &
/A P Rt L , (5.9)
oY |20 | ¥
-~ —a
®w 4 2 8w
? 5F T T T T T T 1 T H
) |
=50 |
2+ : s Fig. 3. Diffraction curve taken depending on the angle of
. departure for the symmetric Bragg case. Si(220) CuK,,
e ¥ — _166.61’, @, = 0.5 |¥|. The corresponding angular
| | scale with respect to & is shown in the upper part of
N R R R B the drawin
0 g
80 87 84 86" 88’ 90'
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Therefore, neglecting the field DI, we obtain for the extinction length corresponding
to the field D@,
Y3
Ly—— o A V!focll’n; (5.10)
27 Im  g@ 4 Ko T lin
( o * 2¢0> )0
According to this relationship, the extinction length in the inclined Bragg geometry
can be = 50 times less as compared with the conventional case. Thus, for silicon (5.10)
gives in our case Le = 130 nm. This value exceeds that for diffraction under SR
conditions (= 10 nm). However, in the case of SR an additional wave field with
large penetration depth appears in the crystal, which complicates the picture [15].
Thus, the inclined Bragg diffraction providing small penetration depth and simple
interpretation of the results obtained, permits one to study very thin surface layers
of crystals.

6. Inclined Bragg Diffraction under Specular Reflection Conditions

At small incidence angles @, ~ @, specular reflection takes place only for the incident

wave. Taking into account that @, > @, we can eliminate one root, Sg) = |¥| + D,
and to reduce the degree of equation (4.4) by one,
S8y + VBE + 0+ o — [P]) (Sy + 2/ DF + ) = o 20, (6.1)
D, + |V

Here only one root S corresponds to the damping of fields with crystal depth. Since
|S®| < |SP], (2.7) acquires a simple form,
Xh¢0 E

B — — e e — .
' Dy (SEJZ) + VQ)(Z) + % + @0) (ng) + V@(Q) + %o + Pn — |!1U|) ’

(6.2)

In this case an essential contribution to the diffracted wave comes from only one
wave field. This statement concerns the wave E§ too.

Of greater interest is the case of large incidence angles near the Bragg-Laue transi-
tion where @, ~ @,, i.e., the condition of SR is fulfilled for the diffracted wave. The
dispersion equation in this case is cubic,

SJ[S3 — 28,(1¥| — @) + &1 = BIE. (6.3)
() .
Equation (6.3) has two roots S{- satisfying condition (5.2) and the third root S
corresponding to the wave not being damped with the crystal depth. From (2.7) one
can readily obtain

S XhEO

= SO + @y — 191 — B0 64
It is worth noting that the field amplitude is expressed through root S{). Both fields
84:2) give comparable contributions to Kj.

Relations (6.3), (6.4) describe in a rather simple way the transition from the Bragg
to the Laue case in inclined geometry. Fig. 4 shows the results of the calculations
for 8i(220) CuK, with the misorientation parameter ¥ = —166.6". With an increase in
the incidence angle from 150" to 170’ the diffraction maximum shifts towards lower
angles of departure and its amplitude substantially decreases. It is important that
no anomalies in the Bragg-Laue transition were observed and the transition occurs
continuously. Indeed, at angles @, 5 @, the second wave field is intensively excited
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e i T Fig. 4. The Bragg-Laue transition depending on
B the variation in the incidence angle. 8i(220) CuK,,
Y = —166.61", (1) @,= 150’, (2) D, = 155,
| ar (3) @, = 160, (4) D, = 165, (5) &, = 170’
2= b
S
B
2t
L
0 5

in the crystal. The transition for these fields occurs at different values of @, and @,
Moreover, the relation between @,, @;, and « leads to the dependence of the transition
angle on « and to a larger spread of the transition. At @, ~ [¥| 4 @, the wave ah is
transformed into a specular component of the diffracted wave whereas the wave
I, itself penetrates into the crystal depth.

As has already been noted, the main advantage of the inclined geometry in the
study of the Bragg-Laue transition consists in the possibility of varying the asym-
metry factor through small changes in the incidence angle. The experimental studies
of this transition in standard (not inclined) geometry [13, 14] meet great difficulties.
In [13] the experiment on white neutron-beam scattering was described. The authors
have analyzed the Bragg-Laue transition since it was possible to record both Bragg
and Laue cases for the scattered radiation. In [14] the crystal was rotated around the
reciprocal lattice vector to vary the asymmetry factor in an extremely asymmetric
geometry, which resulted in the Bragg-Laue transition due to the deviation of the
scattering plane from the surface normal. Our approach is close to that used in [14]
whose authors unfortunately used the formulae derived for the case with no inclination
[10] without theoretical foundation. Moreover the use of large incidence angles hinders
the characterization of thin surface layers.

7. Diffraction Curves Taken Depending on «

It has already been noted that in diffraction by crystals without misorientation the
measurements of diffraction curves depending on « are associated with great experi-
mental difficulties since collimation is necessary both with respect to o and @,. Thus,
in [1] collimation with respect to & was realized with the aid of a bent graphite mono-
chromator, while collimation with respect to @, with the use of slits with an accuracy
of ~ @,, which naturally decreased the total experimental accuracy. If there is
misorientation equal to several degrees, the incidence angle can be chosen sufficiently
large and the requirements to collimation with respect to @, are not so severe. There-
fore, measurements with respect to & can be taken with sufficient accuracy.

Now, consider in more detail the specific character of diffraction curves with respect
to o in the inclined geometry. At o < 0 the rocking curves fall off as |«| ~%?2, whereas
at x > 0 they terminate at the critical angle

xe = (@y + ¥)? (7.1)
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+ a7 Fig. 5. Intensity versus « for positive and negative
| r misorientations. Si(220) CuK,, @, =12/, (1) ¥ = +24’
i 0561 (Laue case), (2) ¥ = —24’ (Bragg case)
s |
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at which the diffracted wave experiences total internal reflection from the surface and
cannot leave the crystal. This phenomenon has been noticed in studies of non-inclined,
extremely asymmetric diffraction [8, 9].

At & > «, the angle @, is imaginary, and a more general expression should be used
instead of (2.8),

Ei 2 Re ®h
E, | D,

P = (7.2)

Curves taken with respect to o are shown in Fig. 5. Note, that in the Laue case the
intensity maximum is noticeably shifted and is fully determined by SR. One can
observe no peaks at & = 0 on this curve. In the Bragg case SR results in the appearance
of an additional maximum at small angles of departure.

The region near «, is characterized by total external reflection at small @,, on the one
hand, and, on the other hand, by total internal reflection. In [21, 22] this fact was
interpreted as the presence of an X-ray surface wave. But in the actual fact such an
interpretation has no grounds. Surface waves are usually called the waves which freely
or with insignificant damping propagate along the surface, i.e., the waves which are
the eigen-solutions of the problem. The most appropriate example here is that of
polaritons. In our case to obtain a wave propagating along the surface (the diffracted
wave), it is necessary also to have simultaneously the transmitted wave. These two
waves are dynamically related and they are ‘‘fed”” by the wave incident onto the crys-
tal. Hence, it follows that the surface wave cannot exist by itself, i.e., it is not an eigen-
solution. This should be kept in mind if one wants to use this phenomenon for surface
characterization [22] and designing gamma lasers [23].

As has already been indicated, of great interest for studying surface layers is the
measurement of asymptotic diffraction in inclined geometry. The diffraction is called
asymptotic if there are significant deviations from the diffraction maximum [18]. As
has been shown in [18], though the penetration depth of X-ray radiation in a crystal
at large values of « reaches the value of the absorption depth, the diffracted radiation
escapes effectively from a layer of thickness z ~ A/|x|. It can readily be shown that at
lo| > ¥ in the inclined geometry the excape depth in asymptotic diffraction is
z~ Z/V]oc]. Thus in the case of inclined geometry a certain depth can be reached at
smaller values of &, the intensity losses being smaller. Thus at & =~ 40’ in the ordinary
Bragg case z =~ 1004, whereas in inclined geometry z ~ 104, which provides the study
of monolayers.
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8. Conclusion

The above analysis of diffraction scattering in Bragg-Laue geometry provides great
possibilities of using such diffraction. First and foremost, it concerns the study of
structural perfection of thin surface layers of crystals. The high sensitivity of the
method to the presence of an amorphous film on the crystal surface has been demon-
strated in [17, 20, 24, 25]. Another aspect of the above-considered diffraction geometry
is the possibility of measuring small misorientations of the crystal surface with respect
to the crystallographic planes. It is also possible to measure surface bending and
roughness. Of significant interest is also the measurement of diffraction curves depend-
ing on the angle of departure. An increase of the angular scale by several orders of
magnitude would essentially simplify to take diffraction curves proper and would
provide highly accurate measurements of structure amplitudes.

In conclusion, we should like to consider the applicability of the kinematical ap-
proach to the diffraction in the inclined Bragg-Laue geometry. Vineyard [26] has devel-
oped the theory of diffraction under the conditions of specular reflection on the basis
of the distorted wave approximation. In this approximation refraction and reflection
of waves from the crystal surface is described by the Fresnel formulae, while diffraction
scattering of refracted waves in the crystal is taken into account kinematically, since
it is assumed that for small penetration depths of a radiation in a crystal, which is
associated with total external reflection, the processes of multiple diffraction scatter-
ing are not essential. The dynamical consideration [2, 15] disprove this assumption —
excitation in a crystal under the conditions of total external reflection of the second
wave field with a considerable penetration depth and close values of the amplitudes
of reflected diffracted and incident waves — evidence the presence of dynamical
diffraction scattering.

Therefore, a more general dynamical approach should be invoked, whereas the
kinematical approximation can be used for curve tails or in the cases of strong distur-
bances.

References

[1] W. C. MaRrRaA, P. ElsENBERGER, and A. Y. CHo, J. appl. Phys. 50, 6927 (1979).
[2] A. M. Aranastev and M. K. MELRONYAN, Acta cryst. A3Y, 207 (1983).
[3] P. A. ALERSANDROV, A. M. AFANasTEY, and S. A. StepANOV, Kristallografiya 29, 197 (1984).
[4] P. Farwic and H. W. ScatRMAN, Z. Phys. 204, 489 (1967).
[5] S. Kisaixo and K. Komra, Japan. J. appl. Phys. 10, 551 (1971).
[6] S. Kisurno, J. Phys. Soc. Japan 31, 1168 (1971).
[7] S. Kismino, A. Nopa, and K. KoHRA, J. Phys. Soc. Japan 33, 158 (1972).
[8] T. BEDYXNSKA, phys. stat. sol. (a) 19, 365 (1973).
[9] T. BEDYKSKA, phys. stat. sol. (a) 25, 405 (1974).
[10] F. RusrticHELLI, Phil. Mag. 31, 1 (1975).
[11] J. HirTwic, phys. stat. sol. (a) 87, 417 (1976).
[12] J. HArTwIG, phys. stat. sol. (a) 42, 495 (1977).
[13] V. M. KacaNER, V. L. INDENBoM, M. VRANA, and B. CHALUPA, phys. stat. sol. (a) 71, 371
(1982).
[14] F. ErcuHORN, J. KuLpa, and P. MIkULA, phys. stat. sol. (a) 80, 483 (1983).
[15] P. A. ALEksaNDrROV, M. K. MELKONYAN, and S. A. Stepanvov, Kristallografiya 29, 376
(1984).
[16] P. A. ALEgsANDROV, A. M. Arawasiev, M. K.MELKONYAN, and S. A.STEPANOV, phys.
stat. sol. (a) 81, 47 (1984).
[17] R. M. Imamov, A. L. Gorovin, S. A. SteEPANov, and A. M. Aranasiev, Proc. Internat. Ion
Engineering Congr., ISIAT 83 and IPAT 83, Kyoto 1983 (p. 1913).



154 P. A. ALEKSANDROV et al.: Bragg-Laue Diffraction in Inclined Geometry

[18] S. 8. Yakmov, V. A. CHAPLANOV, A. M. AFANAsIEV, P. A. ALEksaxNprov, R.M. Imamov,
and A. A. Lomov, Zh. eksper. teor. Fiz., Pisma 39, 3 (1984).

[19] Z. G. PinskER, Dynamical Scattering of X-Rays in Crystals, Springer-Verlag, Berlin 1978.

[20] A. L. Gorovin, R. M. Imamov, and S. A. STEPANOV, Acta cryst. A40, 225, (1984).

[21] A. V. AxpreEv, E. K. Kovev, YU. A. MATVEEV, and Yu. V. PoxomarEev, Zh. eksper. teor.
Fiz., Pisma 35, 412 (1982).

[22] A. V. Axpreev and E. K. Kovev, lzv. Akad. Nauk SSSR, Ser. fiz. 47, 1984 (1983).

[23] A. V. A¥DREEV, A. AkHMANOV, and E. K. Kovzy, Izv. Akad. Nauk SSSR, Ser. fiz. 47, 1898
(1983).

[24] A. L. Gorovix and R. M. Imamov, phys. stat. sol. (a) 77, K91 (1983).

[25] A. L. GoroviN and R. M. Imamov, phys. stat. sol. (a) 80, K63 (1983).

[26] G. H. VINEYARD, Phys. Rev. B 26, 4146 (1982).

( Received July 30, 1984)



